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Abstract. We investigate the optimal relationship between the aerodynamic power, thrust loading, and size of a wind turbine

rotor when its design is constrained by a static aerodynamic load. Based on 1D-axial momentum theory, the captured power

P̃ for a uniformly loaded rotor can be expressed in terms of the rotor radius R and the rotor thrust coefficient CT . Common

types of static Design Driving Load Constraints (DDLC), e.g. limits on permissible root-bending moment or tip deflection,

may be generalized into a form that also depends on CT and R. Using these relationships to maximize P̃ subject to a DDLC,5

shows that operating the rotor at the Betz limit (maximum CP ) does not lead to the highest power capture. Rather, it is possible

to improve performance with a larger rotor radius and lower CT without violating the DDLC. As an example, a rotor design

driven by a tip-deflection constraints, may achieve 1.9% extra power capture P̃ compared to the baseline (Betz limit) rotor.

The method is extended for optimization of rotors with respect to Annual Energy Production (AEP ), where the thrust

characteristicsCT (V ) needs to be determined together withR. This results in much higher relative potential for improvements,10

since the constraint limit can be met over a larger range of wind speeds. For example, a relative gain in AEP of +5.7% is

possible for a rotor design constrained by tip deflections compared with a rotor designed for optimal CP . The optimal solution

for AEP leads to a thrust curve with three distinct operational regimes and so called thrust-clipping.
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1 Introduction15

Since the start of the wind energy industry it has been a clear trend that the rotor size is increasing. But as it has been discussed

in Sieros et al. (2012) the increasing rotor size is not a clear way to decrease the Cost of Energy (CoE), since the weight (which

is closely related to cost) of the rotor always will scale with a higher exponent than the increase in power. It is therefore argued

that the lower CoE, that has taken place, is mostly due to technology improvements. The structural design of the turbine is

built to carry the loads coming from the aerodynamics (steady or extreme) and the self weight. Therefore lowering the loads20

should lead to a lighter blade. The steady aerodynamic load is applied in order to extract power and increasing the load leads to

a higher power until maximum power efficiency (max CP ) is reached. Increasing the load should lead to a heavier blade but it

also leads to a higher power production. It goes to show that understanding the relationship between loading, power production

and structural response is very important to get the most cost effective turbine. It follows a trend that has been in the recent year
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that wind turbine optimization should include a more holistic approach with concepts like Multidisciplinary Design Analysis25

and Optimization (MDAO) and System Engineering (Fleming et al., 2016; Perez-Moreno et al., 2016; Zahle et al., 2015) here

all the parts of the turbine design that affect the cost should be taken into account with the overall objective of minimizing CoE.

Some of these related works focus more on the relationship between rotor loading effect on power and structural response. One

of the concepts that comes out of it is the so called Low Induction Rotor (LIR) where the velocity induction at the rotor plane

is lower than the value that maximizes the power efficiency. The concept was introduced by Chaviaropoulos and Sieros (2014)30

where it comes out of optimizing Annual Energy Production (AEP) by allowing the rotor to grow while constraining the flap

root bending moment to be the same as a baseline. They state that the method can increase the AEP with 3.5% with a 10%

increase in rotor radius hereby showing that LIR can increase AEP while keeping the same flap root bending moment. It agrees

with Kelley (2017) who allowed for a change in the radial loading resulting in an AEP increase of 5% with a radius increase of

11%. It was also investigated by Bottasso et al. (2015) where they both tested the potential of using LIR for AEP improvements35

with load constraint as well as a cost optimized rotor. They find the same as the previous two that LIR can improve AEP, but

when they consider the CoE they find the LIR is not cost effective, meaning that the additional cost of extending the blade is

not compensated by the increase in power. This conclusion is opposed to the conclusion made by Buck and Garvey (2015b)

where they target to minimize the ratio between Capital Expenditures (CapEx) and AEP. They arrive at LIR as the optimal

solution for CapEx/AEP which is taken as a measure for CoE. Overall it seems that LIR can increase AEP while keeping the40

same load as a non-LIR baseline, but it is not clear if LIR is a cost effective solution.

In this paper we investigate the relationship between load, power and structural response. We will use simple analytical

model like 1D-aerodynamic-momentum theory and Euler-Bernoulli-Beam theory which is rather crude approximations to use

for wind turbine rotor design, but it should be understood that the result presented here is not intended to be used directly for

rotor design but to show a possible way to include structural/load constraints into the design process. Instead of using a cost45

model we make constraints on the load/structural response relative to a baseline design and require that the load/structural

response is not larger than the baseline. As it was argued above, keeping the same load does not necessary mean that the cost

of the blade is the same and it is a limitation of the work. A better measure for the blade cost is to keep the mass constant,

and a constraint was setup where the mass of the load carrying part of blade was kept to get a likely better constraint for an

equal cost. The constraints will not include the effect from aero-elastic extreme loads as it is thought to be out of scope for an50

analysis at this level. But it is expected that if the extreme loads happens in normal operation there should be a relationship

between the steady and extreme loads.

The paper starts by presenting the background Theory, then continues to present the Formulation of rotor design problems

which leads into Results and discussion.
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2 Theory55

This section will introduce the variables and the basic relationships used in this paper. It is split into two subsections: where

subsection 2.1 introduces aerodynamic variables, equations, as well as the baseline rotor, while the second subsection 2.2

present scaling laws used to formulate design driving load constraints relative to the baseline rotor.

2.1 Aerodynamics

The theory for this Aerodynamics section is found in Sørensen (2016).60

For wind turbine aerodynamics non-dimensional coefficients are often introduced and some of the common ones are for the

rotor thrust (CT ) and power (CP ).

CT =
T

1
2ρV

2πR2
(1)

CP =
P

1
2ρV

3πR2
(2)

Where T and P are the rotor thrust and power respectively, ρ is the air density, V is the undisturbed flow speed and R is the65

rotor radius.

These definitions can be applied for any wind turbine rotor, but in this paper we will use a simplified relationship between

CT and CP , which is derived from classical 1D-momentum theory. This implies an assumption of uniform aerodynamic

loading across the rotor plane. The classical equations are often given in terms of the axial induction (a), which is defined

as a= 1− Vrotor

V where Vrotor is the axial flow speed in the rotor plane. By combining the two classical momentum theory70

expressions for CP (a) and CT (a) (Sørensen, 2016, p. 11 eq. 3.8), the following relationship between these coefficients is

arrived at:

CT (a) = 4a(1− a)

CP (a) = 4a(1− a)2



 =⇒ CP (CT ) = (1− a)CT =

1
2

(
1 +

√
1−CT

)
CT , CT ∈ [0,1[ (3)

Where a(CT ) is found by inverting CT (a) and using the negative solution. A plot of CT vs. CP can be seen in figure 1. This

CP (CT ) curve is monotonically decreasing in slope and reaches a maximum CP = 16/27 corresponding to the well-known75

Betz-limit atCT = 8/9. These monotoncity properties leads to the key observation that a reduction in thrust (CT = 8/9−∆CT )

will not lead to a proportional change in power (∆CP ). This motivates this paper’s investigation of the trade-off between power

and load.

Power capture and Annual Energy Production (AEP)

One way to understand the power yield of a rotor is to consider equation 2 as consisting of three separate terms:80

P =
1
2
ρV 3

︸ ︷︷ ︸
Wind

·πR2

︸︷︷︸
Size

· CP

︸︷︷︸
Efficiency

(4)
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Figure 1. Relationship between normalized rotor load CT and power efficiency CP from one-dimensional momentum theory. Notes that

around Betz-limit a small change in CT does not lead to a proportional change in CP , this is illustrated by ∆CT and ∆CP .

Wind is the part of the equation that depends on the wind conditions, Size is the part of the equation that depends on the rotor

swept area, and Efficiency is how much of the potential power the rotor can extract from the kinetic power of the wind. The

combination of equations 2 and 3 provides an expression that captures the latter two terms, which are the only ones affected

by the design of the turbine:85

P̃ (CT , R̃) =
P

1
2ρV

3πR2
0

= CP R̃
2 =

1
2

(
1 +

√
1−CT

)
CT R̃

2 (5)

Where R̃ equals R/R0, with R0 being the radius of the baseline rotor. This equation will be referred to as the Power Capture

equation. It shows that power can be changed by changing either the loading (CT ) or the rotor radius (R). This will serve as

the basic equation when the power capture is optimized for a single design point.

90

When considering turbine design over the range of operational conditions, the Annual Energy Production (AEP) is intro-

duced as an integral metric stating the energy produced per year given some wind speed frequency distribution. It can be

computed as the power production (P ) weighted by the probability density of wind speeds (PDFwind) multiplied by the

period of one year (Tyear):

AEP = Tyear
1
2
ρπR2

0

VCO∫

VCI

P̃ (CT (V ), R̃) ·V 3 ·PDFwind(V )dV (6)95

The wind speed probability distribution PDFwind will be described with a Weibull distribution. VCI and VCO is the wind

speed for Cut In and Cut Out for wind turbine operation. Here they are taken to be VCI = 3ms−1 and VCO = 25ms−1, which
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is common numbers for modern wind turbines.

In this paper we will use a dimensionless measure for AEP which is equivalent to the so called capacity factor, defined as

follows:100

˜AEP (CT , R̃) =
AEP

TyearPrated
=

AEP

Tyear
1
2ρπR

2
0

16
27V

3
0

=
27
16

ṼCO∫

ṼCI

P̃ (CT (Ṽ ), R̃) · Ṽ 3 ·PDFwind(Ṽ )dṼ (7)

Ṽ is a normalized wind speed given as V = Ṽ V0 where V0 is the wind speed at which the turbine reach rated power. In all of this

paper it is taken to be V0 = 10ms−1. It should further be noted that PDFwinddV is dimensionless and non-dimensionalizing

the AEP it also follows that PDFwinddṼ is dimensionless. In all of this paper ˜AEP is computed by discretization of the inte-

gral and computing the integral with the trapezoidal rule given as
∫ ṼCO

ṼCI
f(Ṽ ;CT , R̃)dṼ ≈∑N

i=1
f(Ṽi+1;CT ,R̃)+f(Ṽi;CT ,R̃))

2 ∆Ṽi105

where the discretization (N ) was found to become insignificant with N = 200.

Baseline rotor

The work here aims at demonstrating improved rotor performance compared to a baseline design. This baseline design is

chosen to be a turbine operating at the Betz-limit below rated wind speed and keeping a constant power above rated.

CT,0 =
8
9
≈ 0.889, CP,0 =

16
27
≈ 0.593 (8)110

This choice of baseline mimics the typical practice of designing wind turbines to target operation with maximum CP below

rated power. In reality, turbines will not achieve maximum CP at CT = 8/9 since losses alter the relationship between CT and

CP , but this does not change the fact that turbines are operated at the point of maximum CP . Figure 2 shows the power and

thrust curves for the baseline rotor.

In this paper, all results presented as the change in performance relative to that of the baseline rotor. For this reason , all the115

relevant variables will be normalized by the corresponding baseline rotor values.

∆R=
R

R0
− 1 (9)

∆P̃ =
CPR

2

CP,0R2
0

− 1 (10)

∆L̃=
CTR

Lexp

CT,0R
Lexp

0

− 1 (11)

∆ ˜AEP =
˜AEP
˜AEP 0

− 1 (12)120

where L̃ is a generalized load that will be introduced in the next subsection.

2.2 Scale laws and constraints for Design Driving Loads

In this section, examples of static aerodynamic Design Driving Loads (DDL) will be presented. These examples are not meant

to be exhaustive, but include several of the key considerations that constrain practical design of wind turbine rotors. From the

5
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Figure 2. Top: The dimensionless power and thrust for the baseline rotor as a function of wind speed. Overlaid (in blue) the Weibull wind

speed frequency distribution used throughout (IEC-class III: Vavg = 7.5, k = 2). Bottom: CT and CP as a function of wind speed. These

curves reflect how most turbines are operated today, targeting maximum power efficiency below rated power, which leads to a thrust peak

just before rated power.

scaled loads, Design Driving Load Constraints (DDLC) are introduced, which limit loads so that these do not exceed the levels125

of the baseline rotor. Based on the DDL examples, it is shown that DDLCs can be elegantly put in a generalized form.

Thrust (T )

Thrust typically does not limit the design of the rotor itself, but more likely is a constraint imposed from the design of tower

and/or foundation. The thrust scaling and the associated DDLC is given by:

Scaling DDLC130

T =
1
2
ρV 2

0 πR
2CT =⇒ DDLC(T ) =

T

T0
=

CT

CT,0

(
R

R0

)2

≤ 1 (13)
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Root flap bending moment (Mflap)

The root flap moment is the bending moment at the rotational center in the axial flow direction. To compute Mflap, the 1D-

momentum-theory relations for infinitesimal thrust (dT ) and moment (dM ) are integrated:

dT =
1
2
ρV 2CT 2πrdr (14)135

dMflap = rdT (15)

Where r is the radius location of the infinitesimal load (r ∈ [0,R]). The moment scaling and DDLC can therefore be found as:

Scaling DDLC

Mflap =

R∫

0

dMflap =
1
3
ρV 2

0 CTπR
3 =⇒ DDLC(Mflap) =

Mflap

Mflap,0
=

CT

CT,0

(
R

R0

)3

≤ 1 (16)

As it is seenMflap scales withR3 so it grow faster than the power, which grows asR2.Mflap is important for the blade design140

since the flap-wise aerodynamic loads need to be transferred via the blade structure to root of the blade.

Tip deflection (δtip)

Tip deflection is a common DDLC for contemporary utility-scale turbines, where tip clearance between tower and blade may

become critical because of relatively long and slender blades. To get an idea for how tip-deflection scales with changes in

loading and rotor radius, Euler-Bernoulli Beam Theory (Bauchau and Craig, 2009, p. 189 eq. 5.40) is used. For the problem145

here it takes the form:

d2

dr2
EI

d2δ

dr2
=

dT
dr

=
1
2
ρV 2CT 2πr (17)

Where δ is the deflection in the flap-wise direction of the blade at location r. EI is the stiffness of the blade a location r.

For modern turbines the stiffness decrease towards the tip of the blade. To get an estimate for the stiffness it is assumed that

stiffness follows the size of the chord (EI ∝ c). The chord is given by the equation in (Sørensen, 2016, p. 68 eq. 5.26) with an150

approximation for the outer most part of the blade it can be found that c∝R/r which means that EI ∝R/r. An approximate

model for EI can be made that have EI ∝R/r:

EI(r) =
EIr

1 +
(

EIr

EIt
− 1
)

r
R

(18)

Where EIr is the stiffness at the root and EIt is the stiffness at the tip of the blade. As mentioned above for wind turbines

EIr >EIt.155

With the equation for EI equation 17 can be solved by indefinite integration where the integration constants are determined

from the following boundary conditions:

δ(r = 0) = 0,
dδ
dr

(r = 0) = 0
︸ ︷︷ ︸

Clamped root

d2δ

dr2
(r =R) = 0,

d3δ

dr3
(r =R) = 0

︸ ︷︷ ︸
Free tip

(19)
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The resulting displacement solution looks the following:

δ =
11π
120

V 2ρ

EIr
CTR

5

(
2
33

(
EIr
EIt
− 1
)
r̃6 +

1
11
r̃5− 5

11

(
EIr
EIt
− 1
)
r̃4 +

10
11

(
2
3
EIr
EIt
− 5

3

)
r̃3 +

20
11
r̃2
)

(20)160

=
11π
120

V 2ρ

EIr
CTR

5δshape

(
r̃,
EIr
EIt

)
(21)

Where the normalized radius (r̃ ∈ [0,1]) has been introduced so that r =R · r̃. The maximum deflection occurs at the blade tip

(r̃ = 1), which leads to the following scaling relation and DDLC for tip deflection:

Scaling DDLC

δtip =
11π
120

V 2ρ

EIr
CTR

5δshape

(
r̃ = 1,

EIr
EIt

)
=⇒ DDLC(δtip) =

δtip
δtip,0

=
CT

CT,0

(
R

R0

)5

≤ 1 (22)165

Where it implicitly has been assumed that EIr

EIt
= EIr,0

EIt,0
so that δshape is not changed when R is increased.

Tip deflection with constant mass

The final example of a DDL is also based on tip deflection, but includes a condition to maintain constant mass of the load

carrying structure of the blade. To this end the stylized spar-cap layout depicted in figure 3 is assumed. This layout consists of

two planks. The stiffness of a spar-cap structure with homogeneous Young’s-modulus (E) can be found from the stiffness of a

Figure 3. Assumed spar-cap structure with dimensions: H is the total build height, h is the space between planks, and B is the plank width.

170
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rectangle and the parallel axis theorem (see figure 3 for variable definition):

Irect =
Bh3

12

EI = 2E

(
Irect +A

(
H −h

2

)2
)

A=Bh





EI = 2E

(
Bh3

12
+Bh

(
H −h

2

)2
)

=
H2Bh

2

(
h2

3H2
+
(

1− h

H

)2
)

(23)

For modern wind turbines h/H << 1 meaning that a common approximation is:

EI ≈ EH
2Bh

2
(24)

To compute the mass for such a structure it will be assumed that plank height h and the plank width B is constant and that the175

change inEI comes from a decrease in building heightH . If then h is decreased whenR is increased the following relationship

need to be satisfied in order for the mass of the planks to have constant mass (assuming constant mass density):

Rh=R0h0 (25)

From there it follows that changes in the radius of the rotor will changes the stiffness as:

EI ≈ EH
2Bh

2
(24)

h=
R0h0

R
(25)




EI ≈ EH

2BR0h0

2R
(26)180

Combining the equation with the tip deflection equation (21) the following scaling and DDLC can be found:

Scaling DDLC

δtip =
11π
120

V 2ρ

EIr
CTR

5δshape

(
r̃ = 1,

EIr
EIt

)

EI ≈ EH
2BR0h0

2R





=⇒ DDLC(δtip+mass) =
CT

CT,0

EIr,0
EIr

(
R

R0

)5

=
CT

CT,0

(
R

R0

)6

≤ 1

(27)

Where it has been used that changing h by the same magnitude for the whole blade leads to EIr

EIt
= EIr,0

EIt,0
and hereby not

affecting δshape. It should be noted that by choosing B to change instead will lead to the same scaling, but with the difference185

being that changing the plank thickness might lead to higher order effects, although they are expected to be insignificant.

Generalizing the constraint form

Considering the four DDLC examples presented above, there appears to be a pattern in the scaling relations that may be written

as follows:

CT

CT,0

(
R

R0

)Rexp

≤ 1 (28)190
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Where Rexp is the DDLC R-Exponent.

If the constraint limit is met the following relationship can be written as:

R=R0

(
CT,0

CT

) 1
Rexp

(29)

3 Formulation of rotor design problems

Based on the performance and constraint relationships outlined in the previous section, this section will present the formu-195

lation of rotor design as optimization problems. Two different classes of problems are introduced, namely: Power Capture

optimization and AEP optimization, where the latter is a generalization of the former with the constraint depending on wind

speed.

3.1 Power Capture optimization

The optimization problem can be stated as:200

maximize
CT ,R̃

P̃ =
1
2

(
1 +

√
1−CT

)
CT R̃

2 (30)

subject to
CT

CT,0
R̃Rexp ≤ 1 (31)

Where the definition of R̃=R/R0 has been used for consistency . The solution for this optimization problem is presented in

the 4.1 section.

It should be noted that this optimization problem is similar to the problem that is given by Chaviaropoulos and Sieros (2014)205

where they optimize while keeping Mflap. So the optimization problem in this paper is a generalization of their optimization

problem.

3.2 AEP optimization

In contrast to the above mentioned optimization of power capture, optimization with respect to AEP requires to determine

CT (Ṽ ) so a function opposed to a scalar value. It is also necessary to fix the rated power to a constant value, while the wind210

speed at which rated power is reached is allowed to change. The problem can be formulated as:

maximize
CT (Ṽ ),R̃

˜AEP =

ṼCO∫

ṼCI

P̃ (CT (Ṽ ), R̃) · Ṽ 3 ·PDFwind(Ṽ )dṼ (32)

subject to
Ṽ 2CT (Ṽ )

CT,0
R̃Rexp ≤ 1, (DDLC)

27
16
P̃ (CT (Ṽ ), R̃)Ṽ 3 ≤ 1, (rated power)

(33)

Where the the wind speed scaling has been added to the DDLC.
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4 Results and discussion215

This section discusses the solutions of the rotor design optimization problems introduced in the previous section.

4.1 Optimizing for power capture

The constrained optimization problem to maximize power capture, as stated in the section 3, may be simplified based on the

observation that optimum solutions will occur at the DDL constraint limit. To understand this, consider that the power capture

of a rotor with an inactive constraint may always be improved by growing the rotor until the constraint is met. This is true220

irrespective of what DDLC that determines the rotor design. Hence, an explicit relation R̃(CT ) can be used to reformulate

from a constrained optimization problem in two variables to an unconstrained optimization problem in one variable.

P̃ (CT , R̃) =
1
2

(
1 +

√
1−CT

)
CT R̃

2 (5)

R̃=
(
CT,0

CT

) 1
Rexp

(29)





=⇒ P̃ (CT ) =
C

2 1
Rexp

T,0

2

(
1 +

√
1−CT

)
C

1−2 1
Rexp

T (34)

With the optimization problem now being:

maximize
CT

P̃ =
C

2 1
Rexp

T,0

2

(
1 +

√
1−CT

)
C

1−2 1
Rexp

T (35)225

By differentiating the objective function 34 with respect to CT and finding its root, the optimal CT as a function of Rexp is

arrived at:

dP̃ (CT )
dCT

= 0 =⇒ (36)

CT =
8
(
R2

exp− 3Rexp + 2
)

(3Rexp− 4)2
(37)

This unique solution is a maximum, which is apparent from the always positive signs of ∆P in figure 4. This figure shows230

the optimal solution for CT and CP , as well as the relative change in radius (∆R) and power (∆P ) compared to the baseline

rotor. From the two left plots, CP is observed to approach the dashed baseline performance (Betz rotor) much faster than CT

as Rexp increases. This is a consequence of the relationship between CT and CP (figure 1). Especially around the Betz-limit

the gradient is very small, which means that changes in CT does not lead to proportional changes in CP . Turning to the two

plots on the right in figure 4, it is seen that the lower CP is more than compensated by increasing R since the relative change235

in power (∆P ) is always positive.

When maximizing power capture for a given thrust (Rexp = 2); blue dashed vertical line in figure 4), it is seen that the

impractical solution of an infinitely large rotor with low aerodynamic loading results. Alternatively, the maximum power for

a given flap root moment (Rexp = 3; orange line) may be achieved by increasing the rotor radius by 11.6% compared to the

baseline design (maximum CP ). The corresponding relative increase in power ∆P is 7.6%. Finally, designs constrained by240
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Figure 4. Top left: Optimal CT as a function of the constraint R-exponent (Rexp). Low left: Rexp vs. CP , notice that the optimal CP curve

has a steeper slope and hugs the baseline closer than CT . Top right: Rexp vs. relative change in radius ∆R. Lower right: Rexp vs. relative

change in power capture (∆P̃ ). Despite the similar shape of curves a difference between the two is that ∆P (Rexp → 2) = 50% where

∆R(Rexp → 2)→∞. The vertical lines represent each of the example constraints. (*DDLC=Design Driving Load Constraint).

tip-deflection (Rexp = 5; green line) allow the relative power ∆P to increase by 1.90% with a relative change in radius ∆R of

2.30%. A table with the results for the the increase in power-capture (∆P ) and radius (∆R) for 4 designs (Rexp = 2,3,5,6)

can be seen in figure 6. As a conclusion, rotors with an active static aerodynamic DDLC should not be designed for maximum

CP as more power can be generated by rotors with lower CT and larger radius R, without violating the relevant DDLC. The

changes in loading is explained in the next section.245
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Figure 5. Relative change in different rotor load parameters (∆L̃) depending on DDLC. The scaling of loads have the form L̃= CTR
Lexp ,

e.g. Lexp = 2 scales as the rotor thrust T and Lexp = 5 scales as the tip deflection δtip. Each curve depicts how a load parameter would

change depending on design driving constraint. As an example consider a design limited by tip deflection DDLC(δtip), i.e. Rexp = 5

matching the dashed green line. Tip deflection meets requirements, while thrust (T ) is lowered 6.6% and flap moment Mflap by 4.4%.

Effect on loads

Even though meeting the constraint limits means that the chosen DDL will be the same as the baseline, it is interesting to know

what happens to the loads that scale different than the DDL. As an example, if the DDLC is Mflap (Rexp = 3) it is given that

it will not change relative to the baseline, but it could be interesting to know what happens to the T and δtip.

To investigate it we will introduce a Generalized Load (L) as a measure of how loads scale.250

L=K0V
2
0 CTR

Lexp (38)

Where K0 is a scaling constant and Lexp is the Generalized Load Exponent. The Generalized Load equation can be made

non-dimensional as:

L̃=
L

K0V 2
0 R

Lexp

0

= CT R̃
Lexp (39)
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The difference between Lexp and Rexp is that Rexp results in a design, wheres Lexp is a load for a design. As an example take255

a design made for tip-deflection (Rexp = 5) then Lexp = 3 will describe the Mflap load for that design.

An equation for the relative change ∆L̃ can be found in terms of the baseline rotor as:

L̃= CT R̃
Lexp (39)

R̃=
(
CT,0

CT

) 1
Rexp

(29)

L̃0 = CT,0R̃
Lexp

0 = CT,0





=⇒ ∆L̃=
L̃

L̃0

− 1 =
(
CT

CT,0

)1−Lexp
Rexp

− 1 (40)

Since it is known that CT ≤ CT,0 the following can be concluded:

Lexp <Rexp The load is lower than the baseline level260

Lexp =Rexp The load is identical to the baseline level

Lexp >Rexp The load is larger than the baseline level

This agrees with figure 5, which illustrates the effect of design constraints (DDLC) on different loads. For example, consider

tip-deflection (Rexp = 5, DDLC(δtip), dashed green line). Looking at the green solid line (Lexp = 5) it is seen that the relative

change in L is zero as expected. Now looking at the loads with Lexp <Rexp, namely thrust (Lexp = 2) and flap-moment265

(Lexp = 3) it is seen that ∆L is lower than the baseline with ∆T =−6.6% and ∆Mflap =−4.4%. But the loads where

Lexp >Rexp the loads are increased. If there was a load that scaled likeLexp = 6 the load would be increased by ∆L(Lexp=8) =

+2.3%. Furthermore, figure 5 shows that the relative decrease in load is always most pronounced for the thrust (Lexp = 2),

the biggest impact occurring around Rexp ≈ 2.5. All the relative change curves have distinct minima, but at the same time are

characterized by large plateaus of relatively small change. Another observation is how quickly the curves grows for Lexp >270

Rexp. As an example take DDLC(Mflap) in this case ∆δtip = +24.5% and ∆L(Lexp=6) = +38.9%. The relative change in

loads becomes smaller as Rexp increases. A sketch with a zoomed view of the tip and a table with the values can be seen in

figure 6.
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Figure 6. Sketch of a turbine with the load/structural response outlined. The zoomed figure shows the radius increase (∆R) and the change

in tip-deflection (∆δtip) for two different DDLCs (bold black line is the baseline). The table shows the relative change in power, radius and

load/structural response for different DDLCs. Rexp = 2 is a thrust constraint design, Rexp = 5 is a tip-deflection constraint design.
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4.2 Low induction rotor

The concept was mentioned in the introduction since it has had some attention over the recent years. The Low Induction Rotors275

(LIR) are rotors designed with lower axial induction a than the level that maximizes CP . The concept is to a certain degree

analogous with optimization of rotors with respect to power-capture. Using the value for CT from power-capture optimization

will not give the a design that will reach the constraint limit, since the increase in rotor radius will make the turbine reach rated

power earlier than the baseline. An additional optimization is therefore required where R is increase until the constraint limit

is reached. The LIR is illustrated by the examples in figure 7 and 8 where the present design framework has been applied with280

constraints pertaining to respectively flap moments (Rexp = 3) and tip deflections (Rexp = 5).

Figure 7. Power and thrust curves for low induction rotor, designed using present method with DDLC exponentRexp = 3, which corresponds

to a Mflap constraint.

In both cases the resulting power curves are slightly above the equivalent baseline ones, and the thrust peaks are reduced

compared with the baseline. The relative change in AEP results in a smaller change than the change in power at the design

point. For the case with DDLC(Mflap), ∆AEP = 6.0% while the power capture increased by ∆P = 7.6%. The corresponding

improvements for a tip deflection constrained rotor (DDLC(δtip)) are ∆AEP = 1.1% and ∆P = 1.9%. The lower relative285

improvement for the LIR is related to the amount of the power that is produced below rated power. The results for LIR is
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Figure 8. Power and thrust curves for rotor with DDLC exponent Rexp = 5, corresponding to a δtip constraint.

summarized in figure 9 with a table and a sketch showing the relative changes in AEP , radius, thrust, root-flap-moment and

tip-deflection for 4 different designs (Rexp = 2,3,5,6).
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Figure 9. Sketch of a turbine with the load/structural response outlined. The zoomed figure shows the radius increase (∆R) and the change

in tip-deflection (∆δtip) for two different DDLCs (bold black line is the baseline). The table shows the relative change in power, radius and

load/structural response for different DDLCs. Rexp = 2 is a thrust constraint design, Rexp = 5 is a tip-deflection constraint design.

18

https://doi.org/10.5194/wes-2019-28
Preprint. Discussion started: 8 July 2019
c© Author(s) 2019. CC BY 4.0 License.



4.3 AEP optimized rotor

As mentioned in section 3, the variables considered for optimization of AEP are CT (Ṽ ) as well as R̃. In this formulation, CT290

can be adjusted independently for each wind speed, which ideally can be achieved through blade pitch control. The relative

radius R̃ couples the rotor operation across all wind speeds, as it necessarily is constant. Based on initial studies, the optimizer

targets solutions with three distinct operational ranges, which ordered by wind speed are:

– Operation with maximum power efficiency (max CP )

– Operation at constraint limit (constant thrust T )295

– Operation at rated power

this can be used to make CT a function of R̃ hereby decreasing the optimization problem to an unconstrained optimization in

one variable (R̃). The CT function is given as:

CT (Ṽ, R̃) =





8
9

8
9 ≤ Ṽ −2CT,0R̃

−Rexp , (maxCP )

Ṽ −2CT,0R̃
−Rexp 1≤ 27

16
1
2

(
1 +
√

1−CT

)
CT R̃

2Ṽ 3, (constraint limit)

1 = 27
16

1
2

(
1 +
√

1−CT

)
CT R̃

2Ṽ 3 1> 27
16

1
2

(
1 +
√

1−CT

)
CT R̃

2Ṽ 3, (rated power)

(41)

Where the last equation needs to be solved to get CT , the solution is a third-order polynomial, which is easier solved numeri-300

cally.

The only free parameter that need to be determined to find the optimal AEP is R̃. The optimization problem can therefore

be reformulated as:

maximize
R̃

˜AEP =

ṼCO∫

ṼCI

P̃ (CT (Ṽ, R̃), R̃) · Ṽ 3 ·PDFwind(Ṽ )dṼ (42)

The problem can be solved with most optimization solvers since the AEP can be computed explicitly if R̃ is given. The305

optimization problem was solved with the L-BFGS-B algorithm described in Zhu et al. (1997) though the use of Scipy (Millman

and Aivazis (2011)).

Examples of the resultant power and thrust curves can be seen in figure 10 and 11, for DDLC(Mflap) and DDLC(δtip)

respectively. Looking at figure 10 (Rexp = 3) it is clear that the power and thrust curves has changed quite substantially,

compared to the baseline Betz-rotor (dashed curves). The thrust curve do not have a sharp peak any more, but a flat plateau.310

This is often refereed to as thrust-clipping, peak-shaving or force-capping. It comes from the DDLC equation 41 which shows

that CT ∝ Ṽ −2, and since thrust is proportional to T ∝ CT Ṽ
2 it means that the thrust is constant. As mentioned the region

where the rotor is thrust-cliped is also where the DDLC is active, so opposed to the baseline and LIR rotor the DDLC is active

over a larger range of V . The larger range of V is also part of why ∆R= 44.6% which is a huge increase. As a result it also

leads to a large increase in ∆AEP = 19.9%. This is a very large change in R̃ and the feasibility of such a design is doubtful.315

As it is shown later the change in maximum loads (see figure 13) shows a significant change in loads with Lexp >Rexp.
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Figure 10. Power and thrust curve for AEP optimized rotor with DDLC exponent is Rexp = 3 which is equivalent to a constraint on Mflap.

A more realistic design for modern turbines is found in figure 11 (Rexp = 5). Here the changes is less but still significant

with ∆R= 10.7% and ∆AEP = 5.8%. It shows the same shape with the thrust-cliped curve, but now it is over a smaller range

of V . Thrust-clipping is also found by Buck and Garvey (2015a) to be a beneficial way to lower CoE.

In figure 12 the relative change in R and AEP can be see as a function of the DDLC R-exponent. The plot both contains the320

result for the AEP -optimized rotor (AEP opt., solid black line) and for the Low Induction Rotor (Low ind. dash-dotted gray

line). The difference between the two is significant especially for ∆AEP . A thing to notes is that in both cases ∆R grows to

infinity as Rexp goes toward 2. But for ∆AEP it will go towards a finite value. The results for the AEP optimized rotor is

summarized in figure 14 with a table and a sketch, that shows the relative changes in radius. The loads are explained in the next

section.325

Effect on loads

In figure 13 a plot of the relative change in maximum loads as a function of the DDLC R-exponent. The relative max load

(∆L̃max) is not comparing the loads at each Ṽ but the max load for the baseline at Ṽ = 1 to the max load for the optimized rotor

for any Ṽ . The plot in figure 13 is similar to the plot in figure 5 with the difference being that it is for the AEP-optimized rotor

and Power-Capture optimized rotor respectively. Comparing the two plots, the range for the y-scale in the two plots should be330
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Figure 11. Power and thrust curve for AEP optimized rotor with DDLC exponent is Rexp = 5 which is equivalent to a constraint on δtip.

noted with figure 13 having the larger range. It also means that the relative change in the loads for the AEP-optimized rotor

experiencing a larger relative change. But it also has the consequence that loads with Lexp >Rexp grows faster especially for

larger values of Rexp (> 5). A summary for the AEP optimized rotor can be seen in figure 14, where a table for 4 different

design (Rexp = 2,3,5,6) shows the relative change in AEP , radius, thrust, root-flap-moment and tip-deflection.
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Figure 12. DDLC exponent (Rexp) vs. relative change in radius (upper graph, ∆R) and relative change in AEP (lower graph, ∆ ˜AEP ). The

plot both contains the changes for the case for Low Induction (Low Ind., black dashed-dot) and the AEP optimized (AEP opt., black solid).

The changes in both AEP and radius is much larger for the AEP optimized rotor. It should be noted that in both cases ∆AEP has a finite

value as Rexp → 2, but ∆R is approaching infinity.
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Figure 13. DDLCR-exponent (Rexp) vs. relative maximum load (∆L̃max). It is a similar plot to figure 5 but here it is for the AEP-optimized

rotor and it is the change in the max load. The range for the y-scale is much larger it this plot than for the power-capture optimized rotor. The

potential reduction is therefore more, but it comes with the consequence that Lexp >Rexp grows faster even for high values of Rexp
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Figure 14. Sketch of a turbine with the load/structural response outlined. The zoomed figure shows the radius increase (∆R) and the change

in tip-deflection (∆δtip) for two different DDLCs (bold black line is the baseline). The table shows the relative change in power, radius and

load/structural response for different DDLCs. Rexp = 2 is a thrust constraint design, Rexp = 5 is a tip-deflection constraint design.
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4.4 Summary of Findings335

In table 1 the tables shown in the figures 6,9 and 14 is summarized. It compares the different optimization’s to each other.

Opt. PC ∆P ∆R ∆T
(Lexp=2)

∆Mflap
(Lexp=3)

∆δtip
(Lexp=5)

Rexp=2 50.0% ∞ 0.0% ∞ ∞
Rexp=3 7.6% 11.6% -10.4% 0.0% 24.5%

Rexp=5 1.9% 2.3% -6.6% -4.4% 0.0%

Rexp=6 1.2% 1.4% -5.5% -4.2% -1.4%

Opt. LIR ∆AEP ∆R ∆T
(Lexp=2)

∆Mflap
(Lexp=3)

∆δtip
(Lexp=5)

Rexp=2 49.7% ∞ 0.0% ∞ ∞
Rexp=3 6.0% 14.8% -12.9% 0.0% 31.9%

Rexp=5 1.1% 2.5% -7.2% -4.9% 0.0%

Rexp=6 0.3% 1.2% -4.6% -3.5% -1.2%

Opt. AEP ∆AEP ∆R ∆T
(Lexp=2)

∆Mflap
(Lexp=3)

∆δtip
(Lexp=5)

Rexp=2 69.7% ∞ 0.0% ∞ ∞
Rexp=3 19.9% 44.6% -30.8% 0.0% 109.0%

Rexp=5 5.7% 10.6% -26.2% -18.3% 0.0%

Rexp=6 3.9% 7.0% -23.8% -18.4% -6.6%

Table 1. Overview of the optimization results from optimizing Power-Capture (Opt. PC), Low-Induction-Rotor (Opt. LIR) and Annual

Energy Production (Opt. AEP)
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4.5 Limitation of the study and possible improvements

The study shows that for a rotor constraint by a static aerodynamic DDL there is a benefit in lowering the loading and increasing

the rotor size in terms of power/AEP. But as it was found by Bottasso et al. (2015) having a rotor with the same load constraint

and increasing the radius does not mean that the cost is the same or that it is cost optimal. They found that the increase in AEP340

did not compensate for the added cost by increasing the rotor radius. This problem of the cost benefit is not directly addressed

in this paper, but by the DDLC δtip+mass a constraint where the mass is kept constant. It is thought to be a better approximation

for a rotor with a fixed price - but this assumption needs to be tested.

Another issue that is not taken into account in this study is the influence of the turbines "self weight". As it was found by

Sieros et al. (2012) the self weight becomes more important for larger rotors. In order to accommodate for the added mass345

a penalty could be added which should scale as R̃ or R̃3 for "top head mass" and "static blade mass moment" respectively.

As discussed above there could also be implemented constraint that will keep the mass or the mass moment. Again this is a

limitation of the study.

The fidelity of the models is also a limitation. Even though 1D-aerodynamic-momentum theory is a common approximation

to do for first order studies in rotor design it is well known that the constantly loaded rotor is not possible to realize and350

when losses are included the constant loaded rotor is not the optimal solution any more. At the same time if it was possible to

decrease the load at the tip more than at the root it would lead to less tip-deflection than a constant loaded rotor with a similar

CT . Extending the model to be able to handle radial load distribution is one way of detailing the model that could lead to even

larger improvements. It could be done through the use of Blade Element Momentum (BEM) theory.

For modern turbine design it is often the case that the structural design is determined by the aero-elastic extreme loads, and355

with the simplicity of the models in this study this is not taken into consideration. But if the extreme load happens in normal

operation it is likely that there is a direct relationship between the steady- and extreme loads, meaning that a decrease in steady

loads will also will lead to a decrease in the extreme load. This is an assumption that should be tested in future work.

5 Conclusions

A first order model framework for the design of wind turbine rotors was developed based on aerodynamic 1D-momentum360

theory and Euler-Bernoulli-Beam theory. This framework introduces the concept of Design Driving Load (DDL) for which a

generalized form has been developed where loads only differ by a scaling exponent Rexp, e.g. thrust scales as Rexp = 2, root-

flap-moment as Rexp = 3 and tip-deflection as Rexp = 5. Despite the simplicity of the model, this study has shown important

trends in how to design rotors for maximum power capture. It has been shown that the potential increase in power capture

is very dependent on the relevant constraint, e.g. whether thrust is the constraining load or the more restrictive tip-deflection.365

Furthermore, it was concluded that the best way to design a rotor for increased power capture using aero-elastic considerations

is not to maximize CP , but rather to relax CP and operate at lower loading (lower CT ). How much one should relax CP

depends on the chosen design driving constraint (Rexp). The results for optimizing for power capture are summarized in Table

1 (Opt. PC).
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The optimization of power capture determines the best possible design based on a given wind speed. By considering the370

Annual Energy Production (AEP ), an optimal design across the range of operational wind speeds can be found for a given

wind speed frequency distribution. Optimal AEP was considered with two different approaches, namely Low Induction Rotor

(LIR) and full AEP -optimization. For LIR, the CT value below rated power was set to the value found from power-capture

optimization with respect to the chosen Rexp. Then the radius was increased to maximize AEP while observing the constraint

limit. A summary of results can be seen in Table 1 (Opt. LIR).375

For the full AEP -optimization, CT was allowed to take on any positive value below the Betz limit (0≤ CT ≤ 8/9) for all

wind speeds. The optimal AEP is obtained for a rotor that operates in three distinct operational regimes:

– Operation with maximum power efficiency (max CP )

– Operation at constraint limit (constant thrust T )

– Operation at rated power380

The results from the optimization are summarized in Table 1 (Opt. AEP). It shows significantly larger relative improvements

in power/energy compared to power-capture and LIR optimized rotors. This comes at the cost of a larger increase in rotor

radius. In the range where the optimum turbine operates at the constraint limit, the thrust curve is clipped (also known as peak

shaving or force-capping). This is a control feature used for many contemporary turbines, so it is interesting that this study,

independently of this knowledge, shows that thrust-clipping is a very efficient way to increase energy capture while observing385

certain load constraints. It is also the main reason behind the relatively large possible improvements in AEP , as the constraint

limit is met over a larger range of wind speeds.

In spite of relatively crude model assumptions made, this paper provides profound insight into the trends of rotor design for

maximum power/energy, e.g. the use of thrust clipping. As wind turbine rotors continue develop towards larger diameters with

slender (more flexible) blades, the type of design driving load constraints also evolves. With the present model framework, the390

conceptual implications of this development become clearer where an increase in AEP of up to 5.7% is possible compared to

a traditional CP optimized rotor - without changing technology, using bend-twist coupling or other advanced features. Finally,

this work has demonstrated an approach to formulate an optimization objective that couples power and load/structural response

though the power-capture optimization. This approach may be extended into less crude model frameworks, e.g. by introducing

radial variations in rotor loading.395
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